

P2560B

Low Frequency EMI Reduction

Features

rev 1.3

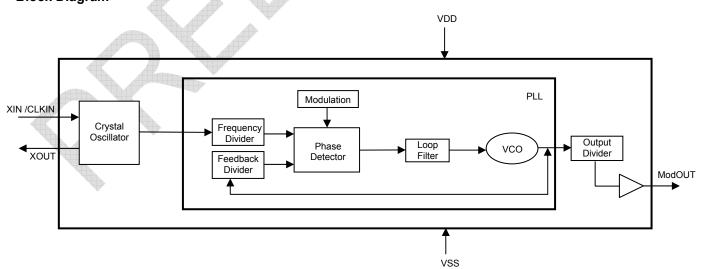
- FCC approved method of EMI attenuation
- Generates a low EMI spread spectrum and a non spread reference signal of the input clock frequency
- Optimized for input frequency range from 20 to 32MHz
- Internal loop filter minimizes external components
 and board space
- Two selectable spread ranges
- 3.3V Operating Voltage
- Ultra low power CMOS design: 5.50 mA @3.3V
 Supports notebook VGA and other LCD timing controller applications
- Available in 8-pin SOIC and TSSOP

circuit board layers and shielding traditionally required to pass EMI regulations.

The P2560B modulates the output of a single PLL in order to spread the bandwidth of a synthesized clock, thereby decreasing the peak amplitudes of its harmonics.

This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most clock generators. Lowering EMI by increasing a signal's bandwidth is called spread spectrum clock generation.

The P2560B uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all-digital method.

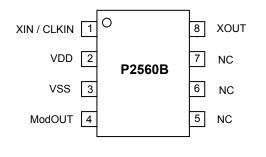

Applications

Product Description

The P2560B is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. It reduces electromagnetic interference (EMI) at the clock source allowing system-wide reduction of EMI of downstream clock and data dependent signals. It allows significant system cost savings by reducing the number of

Block Diagram

The P2560B is targeted toward the notebook VGA chip and other displays using an LVDS interface, PC peripheral devices and embedded systems.



PulseCore Semiconductor Corporation1715 S. Bascom Ave Suite 200, Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018

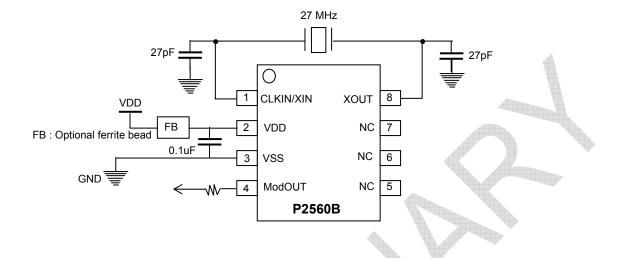
www.pulsecoresemi.com

rev 1.3 Pin Configuration

Pin Description

Pin#	Pin Name	Туре	Description
1	XIN / CLKIN	Ι	Crystal Connection or external frequency input. This pin has dual functions. It can be connected to either an external crystal or an external reference clock
2	VDD	Р	Power Supply for the entire chip.
3	VSS	Р	Ground to entire chip.
4	ModOUT	0	Spread spectrum low EMI output.
5	NC	-	No Connect
6	NC	-	No Connect
7	NC	-	No Connect
8	XOUT	0	Crystal Connection. If using an external reference, this pin must be left unconnected.

Spread Range Selection, VDD = 3.3 V


CLKIN frequency	Spreading range	Modulation rate
20 MHz	±1.16%	
25 MHz	±1.13%	
27 MHz	±1.11%	(CLKIN/10) * 20.83 kHz
30 MHz	±1.10%	
32 MHz	±1.10%	

P2560B

rev 1.3

Schematic for Notebook VGA Application

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
$V_{\text{DD}}, V_{\text{IN}}$	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
T _A	Operating temperature	-40 to +85	°C
Τs	Max. Soldering Temperature (10 sec)	260	°C
TJ	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per JEDEC STD 22- A114-B)	2	кv

P2560B

rev 1.3

DC Electrical Characteristics

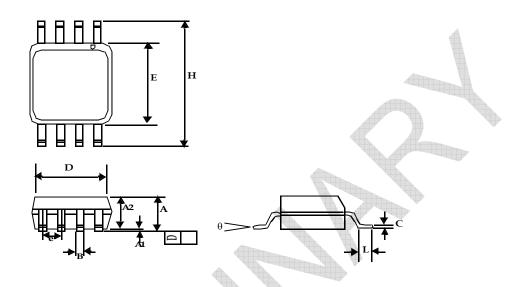
Symbol	Paran	Min	Тур	Max	Unit	
VIL	Input Low Voltage		VSS – 0.3	-	0.8	V
VIH	Input High Voltage		2.0	-	VDD + 0.3	V
IIL	Input Low current		-60.0	-	-35	μA
I _{IH}	Input High current	-	-	35	μA	
I _{XOL}	XOUT Output low current	V_{XOL} at 0.4V, V_{DD} = 3.3V	-	3	-	mA
I _{хон}	XOUT Output high current	V _{XOH} at 2.5V, V _{DD} = 3.3V	-	3	-	mA
V _{OL}	Output Low Voltage	V _{DD} = 3.3V, I _{OH} = 20mA	-		0.4	V
V _{OH}	Output High Voltage	V _{DD} = 3.3V, I _{OH} = 20mA	2.5	-	-	V
I _{DD}	Static supply current	CLKIN / XIN pulled LOW	-	0.6	-	mA
I _{CC}	Dynamic supply current	3.3V and 10pF loading	3.2	-	7.0	mA
V _{DD}	Operating Voltage	3.0	3.3	3.6	V	
t _{ON}	Power up time (first locked cloc	-	0.18	-	mS	
Z _{OUT}	Clock Output impedance		- 4	50	-	Ω

AC Electrical Characteristics

Parameter		Min	Тур	Max	Unit
Input Frequency		20	-	32	MHz
Output Frequency		20	-	32	MHz
Output Rise time	Measured from 0.8V to 2.0V	0.7	0.9	1.1	nS
Output Fall time	Measured from 2.0V to 0.8V	0.6	0.8	1.0	nS
Jitter (Cycle to cycle)		-	-	360	pS
Output Duty cycle		45	50	55	%
	Output Frequency Output Rise time Output Fall time Jitter (Cycle to cycle	Input Frequency Output Frequency Output Rise time Measured from 0.8V to 2.0V Output Fall time Measured from 2.0V to 0.8V Jitter (Cycle to cycle)	Input Frequency 20 Output Frequency 20 Output Rise time Measured from 0.8V to 2.0V 0.7 Output Fall time Measured from 2.0V to 0.8V 0.6 Jitter (Cycle to cycle) -	Input Frequency 20 - Output Frequency 20 - Output Rise time Measured from 0.8V to 2.0V 0.7 0.9 Output Fall time Measured from 2.0V to 0.8V 0.6 0.8 Jitter (Cycle to cycle) - - -	Input Frequency 20 - 32 Output Frequency 20 - 32 Output Rise time Measured from 0.8V to 2.0V 0.7 0.9 1.1 Output Fall time Measured from 2.0V to 0.8V 0.6 0.8 1.0 Jitter (Cycle to cycle) - - 360

Note: 1. t_{LH} and t_{HL} are measured into a capacitive load of 15pF

Low Frequency EMI Reduction

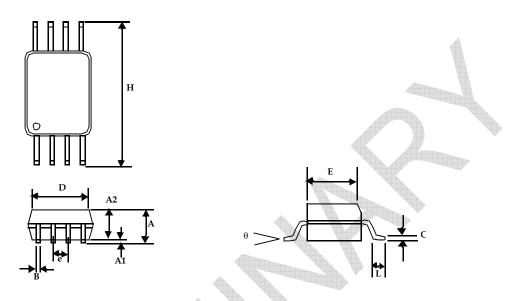


P2560B

rev 1.3

Package Information

8-lead (150-mil) SOIC Package


	Dimensions				
Symbol	Incl	hes	Millimeters		
	Min	Мах	Min	Мах	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193 BSC		4.90 BSC		
E	0.154	BSC	3.91 BSC		
е	0.050 BSC		1.27 BSC		
Н	0.236 BSC		6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

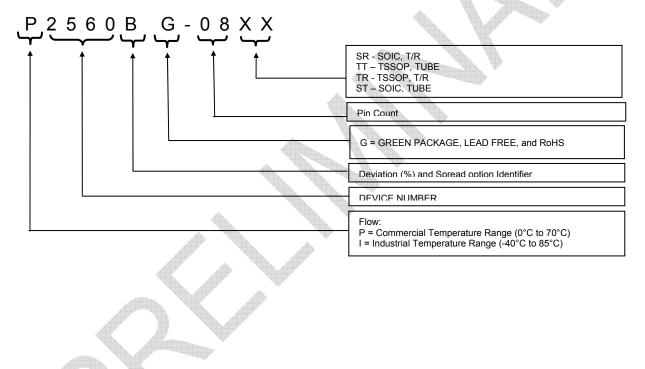
Note: Controlling dimensions are millimeters SOIC – 0.074 grams unit weight

rev 1.3

8-lead Thin Shrunk Small Outline Package (4.40-MM Body)

	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Мах	Min	Max	
А	A	0.043		1.10	
A1	0.002	0.006	0.05	0.15	
A2	0.033	0.037	0.85	0.95	
В	0.008	0.012	0.19	0.30	
С	0.004	0.008	0.09	0.20	
D	0.114	0.122	2.90	3.10	
E	0.169	0.177	4.30	4.50	
е	0.026 BSC		0.65 BSC		
Н	0.252 BSC		6.40 BSC		
L	0.020	0.028	0.50	0.70	
θ	0°	8°	0°	8°	

Note: Controlling dimensions are millimeters TSSOP – 0.0325 grams unit weight


P2560B

rev 1.3

Ordering Information

Part number	Marking	Package Configuration	Temperature Range
P2560BG-08ST	P2560BG	8-Pin SOIC, Tube, Green	Commercial
P2560BG-08SR	P2560BG	8-Pin SOIC, Tape and Reel, Green	Commercial
I2560BG-08ST	I2560BG	8-Pin SOIC, Tube, Green	Industrial
I2560BG-08SR	I2560BG	8-Pin SOIC, Tape and Reel, Green	Industrial
P2560BG-08TT	P2560BG	8-Pin TSSOP, Tube, Green	Commercial
P2560BG-08TR	P2560BG	8-Pin TSSOP, Tape and Reel, Green	Commercial
I2560BG-08ST	I2560BG	8-Pin TSSOP, Tube, Green	Industrial
I2560BG-08SR	I2560BG	8-Pin TSSOP, Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

rev 1.3

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Preliminary Information Part Number: P2560B Document Version: v1.3

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.